首页 > 考研 > 阅读资料 >

2018考研数学28个易错点分析

推荐:陕西中公考研网2017-12-13 15:54:19 | 陕西中公教育

更多考研信息请关注陕西中公考研微信(sakaoyan365),也可以加入18考研交流群:584707135

以下是陕西考研网小编整理的“2018考研数学28个易错点分析”的相关资讯,一起来了解一下吧!想了解的同学们尽快看一看。

高等数学

1.函数在一点处极限存在,连续,可导,可微之间关系。对于一元函数函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极限。若函数在某点不连续,则该函数在该点不一定无极限。若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续,可导与可微等价。而对于二元函数,只能又可微推连续和可导(偏导都存在),其余都不成立。

2.基本初等函数与初等函数的连续性:基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

3.极值点,拐点。驻点与极值点的关系:在一元函数中,驻点可能是极值点,也可能不是极值点,而函数的极值点必是函数的驻点或导数不存在的点。注意极值点和拐点的定义一充、二充、和必要条件。

4.夹逼定理和用定积分定义求极限。这两种方法都可以用来求和式极限,注意方法的选择。还有夹逼定理的应用,特别是无穷小量与有界量之积仍是无穷小量。

5.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

6.泰勒中值定理的应用,可用于计算极限以及证明。

7.比较积分的大小。定积分比较定理的应用(常用画图法),多重积分的比较,特别注意第二类曲线积分,曲面积分不可直接比较大小。

8.抽象型的多元函数求导,反函数求导(高阶),参数方程的二阶导,以及与变限积分函数结合的求导

9.广义积分和级数的敛散性的判断。

10.介值定理和零点定理的应用。关键在于观察和变换所要证明等式的形式,构造辅助函数。

11.保号性。极限的性质中最重要的就是保号性,注意保号性的两种形式以及成立的条件。

12.第二类曲线积分和第二类曲面积分。在求解的过程中一般会使用格林公式和高斯公式,大部分同学都会把精力关注在是否闭合,偏导是否连续上,而忘记了第三个条件——方向,要引起注意。

注:本站稿件未经许可不得转载,转载请保留出处及源文件地址。

责任编辑(girl会)

分享
相关文章推荐
历年真题
考试提醒
视频专区
最新活动
我要提问在线问答
问: 地方税务局没写是参公,那就是公...
提问人:花开彼岸1993|03-27已解决
问: 函授本科7月拿毕业证,今年能以本...
提问人:米米的晴天|03-27已解决
问: 应届往届身份怎么确定
提问人:世辉网络|03-27已解决
问: 签了假三方 档案在人才市场 毕...
提问人:54jingtian|03-27已解决